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Different mixing displacement regimes for viscoplastic fluids are investigated theoretically 

and experimentally. 

The problem of displacing viscoplastic fluids is of interest in connection with the problem of improving 
the cementing of oil wells. Here, a very important problem is the problem of the effect of cavities in the well 

walls on the cementing process. 

Mixing displacement is usually examined (see, e.g., [i]) only for channels with constant cross section 
with a plane-parallel velocity profile (in this case, other simplifying assumptions, such as uniformity in the 
properties of the liquids, absence of transverse transport of matter, etc., are made as well). 

In the present work, the problem of mixing displacement of fluids from a channel with a cavity is solved 

without any simplifying assumptions involving the structure of the flow or the nature of the transport of matter. 
The rheological properties of the viscoplastic fluid are approximated by Williamson's model [2]; the displaced 
and displacing fluids have the same density and viscosity. The results of the calculations are compared with 

the experimental data obtained by the authors. 

i. Let us assume that initially a channel with a rectangular cavity is filled with a fluid moving in a stea- 

dy-state flow (displaced fluid). The boundaries AH and BCDEFG (Fig. la) are solid, the segment AB repre- 
sents the inlet section of the region, and GH is the outlet, and in the inlet and outlet regions the motion is as- 

sumed to be plane-parallel. 

The position of the boundaries AB and GH, with which the motion in these sections can be viewed as 
plane-parallel, was determined by a numerical experiment. Analysis of the results shows that the motion near 
sections AB and GH becomes, to a good approximation, plane-parallel with lengths BC and FG exceeding L/2. 

In the calculations, the results of which are presented in the article, it was assumed that BC = FG = L. 

The velocity field of the stationary flow was determined from the equations (incompressible fluid) 

Ov~ 1 Op + 1 O'v~k Ovk (1) 
v h - - ~ .  , = O. 

OXh p OX.: p OX~ Oxh 

In order to model the viscoplastic fluid, we chose Williamson's fluid [2] 

T0 

W + ]2eihe~[ ~/2 ' 

1 (Ov~ + Ovh'~ 

(2) 

which for W ~ 0 has properties that are nearly the same as Bingham's fluid. (The calculations were performed 
precisely in this range of variation of parameters.) Writing Eqs. (i) and (2) for a plane flow in terms of the 

stream function ~, the vorticity q~, and the dimensionless viscosity v: 

a~ o4 avv av~ ~1 
- -  , ~ , v =  - -  ( 3 )  

v x =  Oy ' vv Ox ~ =  Ox Oy ~1| 

and transforming to dimensionless variables, we obtain 
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Fig. 1. Flow lines with T : 1 2 :  a) R e = 1 8 0 0 ; b )  R e :  
10. 
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a2 v a2 ~ (4) ' a2~7 O2v 
! = 4 -  i 

-~ax2 + av~ / 
a2~ a2~ )(a2, 

+ ax~ aY2 ax2 (5) 
a2, a2, 

- - q  - 9 ,  

ax 2 av 2 
T 

: 1 + Re [4 a ~  2 i/2 (6) 

&av &av 

a2* ) 
ay2 ' 

Here, the units of length and velocity are chosen as the half-width of the channel h and the average pump- 

ing velocity u, determined from the flow rate. Three similarity criteria emerge from Eqs. (4)-(6): ire = uh/ 

(~oP), Reynolds number; T = %h2p/72, the analog of Hedstrem's number for Bingham's fluid; B = Wh2p/~o, 
a parameter in Williamson's model. In the calculations, the quantity B was chosen so that the fluid would have 

properties nearly the same as Bingham's fluid. The results presented below were obtained for B = T/100. The 

calculations show that for such a ratio of B and T the plane-parallel velocity profile at the inlet coincides with 

quite good accuracy with the Bingham profile, and further decrease in B has almost no effect on the flow struc- 
ture in the channel and the cavity. 

Let us examine the boundary conditions for Eqs. (4)-(6). 

The stream function and VOl%icity, corresponding to the solution of Eqs. (i) for a plane-parallel flow, 

are given at the inlet AB and outlet GH: 

* = ,o(V), �9 : %(v), (7) 

whe re 

+ ~ ( c - - / [ a - -  (r Re) vl~b) - -  1 - - ! - -  • 
(r Re) 8 3 (r Re) 3 

v+ (8) 
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Fig .  2. D e v e l o p m e n t  of  the  d i s p l a c e m e n t  p r o c e s s  
wi th  t i m e :  a) fo r  T = 12,  Re = 1800; b) fo r  T = 12, 
Re = 10 (in the  shaded  p a r t  o f  the  channe l  C > 0.65). 

• [c ~ - -  (1 / [a  - -  (r Re) y]Z + b) 31 H 
b [a - -  (r R e )  y] 

(r Re) 3 
In [a--(rRe)y-k l /  [a--(rRe)y]2+b ~!. 

L 

r 

Vo (y) = -2- 

The c o n s t a n t  quan t i t i e s  a,  b ,  o,  and r ,  

----- l--y-- rR-----e- §  ~/i[a--(rRe)Y]Z+ b . 

e n t e r i n g  into Eqs .  (8), and (9), a r e  d e t e r m i n e d  as  fo l lows:  

(9) 

a - -  r R e + B - - T ,  b = 4BT, c = 1 / [ ( r R e ) 2 + B - - T I 2 @  4BT, 

r= ~ h2/~u, 

w h e r e  -~x is the  magn i tude  of the  p r e s s u r e  g r a d i e n t  in the  m a i n  channe l .  

ent) was  d e t e r m i n e d  b y  a so lu t i on  of  the  t r a n s c e n d e n t a l  equa t ion  

%(1)  = 1. 

The  c o n s t a n t  r ( p r e s s u r e  g r a d i -  

(1o) 

Condi t ion  (10) m e a n s  that  t he  a v e r a g e  v e l o c i t y ,  d e t e r m i n e d  a c c o r d i n g  to  the  d i s t r i b u t i o n  (8), c o i n c i d e s  wi th  
the  v e l o c i t y  u,  c h o s e n  as  the  uni t  of m e a s u r e m e n t .  

On the  so l id  b o u n d a r i e s  AH and B C D E F G ,  the  s t r e a m  func t ion  m u s t  be  a c o n s t a n t ,  c o r r e s p o n d i n g  to  the  
d i s t r i b u t i o n  (8): 

= 0 on BCDEFG, ~? = %(2) on AH. (11) 

The  va lue  of  the  v o r t i c i t y  9 on the  s o l i d  b o u n d a r i e s  de pe nds  on the s t r u c t u r e  of the  m o t i o n  in t he  r e g i o n  and 
for  th i s  r e a s o n  i s  d e t e r m i n e d  d u r i n g  the c a l c u l a t i o n .  

Equa t ions  (4)-(6) wi th  b o u n d a r y  cond i t ions  (7) and (11) p e r m i t  d e t e r m i n i n g  the s t r e a m  func t ion  f ie ld  and 
v o r t i c i t y ,  c o r r e s p o n d i n g  to  a s t a t i o n a r y  f low of  d i s p l a c e d  f lu id .  

We wi l l  s t u d y  the  d i s p l a c e m e n t  p r o c e s s  i t s e l f  a s s u m i n g  tha t  the  d i s p l a c e d  and d i s p l a c i n g  f lu ids  have  the  
s a m e  d e n s i t y  and v i s c o s i t y .  Such cond i t ions  a r e  u s u a l l y  not  r e a l i z e d  in p r a c t i c e ,  but  the  r e s u l t s  of  e x p e r i -  
m e n t s  on m o d e l s  (Sec.  3) show tha t  the  b e h a v i o r  c o r r e s p o n d i n g  to  the  e x i s t e n c e  of two d i f f e r e n t  d i s p l a c e m e n t  
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regimes exists both when the properties of the displaced and displacing fluids are nearly the same, as well 

as in the case when the density and viscosity of the fluids differ considerably. 

Let us assume that at some time, taken as the origin, the displacing fluid begins to flow into the inlet 

AB. If the displacing and displaced fluids have the same density and viscosity, then the movement of the dis- 

placed fluid into the channel does not change the structure of the flow significantly. Then, the displacement 

process can be studied by solving the equation for the concentration, considered against the background of the 

unchanged flow structure (the same as in the initial state). 

Let us introduce the concentration C of the displacing fluid in the usual manner as the ratio of the mass 

of the displacing fluid in some volume to the total mass of this volume. The equation for the concentration as- 

suming a constant diffusion coefficient has the form 

ac a,  ac a ,  ac 1 ( a~c afc ~ (12) 
a--[ + o f  ox ox ov - pe \ ~ - k ~ J '  

where Pe = uh/D is Peclet's number (D indicates the diffusion coefficient). The quantity h/u is chosen as 

the time unit in Eq. (12). 

The boundary conditions for Eq. (12) are as follows. 

On the solid boundaries, the condition expressing the absence of a flow of matter through the boundary 

must be satisfied. For this reason 

OC OC (13) 
- -  = 0  on CD, EF, - - 0  onBC, DE, FG, AH. 
Ox Og 

At the inlet, the concentration is assumed to be unchanged: 

C = I on AB, (14) 

while the concen t ra t ion  at the outlet  GH is computed.  

Thus,  a solut ion of the p r o b l e m  of d i sp l a c e m e n t  s e p a r a t e s  into two s tages .  

In the f i r s t  s t age ,  the s t r u c t u r e  of the s t a t i o n a r y  flow is de te rmined .  Equations (4)-(6) a r e  solved nume-  
r i c a l l y  us ing a f inite d i f fe rence  method.  A d i f fe ren t  scheme is used approx imat ing  the f i r s t  de r iva t ives  of the 
v o r t i c i t y  q0 in Eq. (4) by  one - s ided  d i f f e r ence s ,  or ien ted  aga ins t  the flow, and the remain ing  de r iva t i ve s  a r e  
approx imated  by cen t ra l  d i f f e rences .  In o r d e r  to solve the d i f fe rence  equat ions,  L ibman ' s  i t e r a t i on  method 
with s u c c e s s i v e  lower  r e l axa t ion  is used.  The values of the vo r t i e i t y  on the sol id  boundar ies  a r e  ca lcula ted  
accord ing  to T o m ' s  fo rmulas  [31. 

The d i sp l acemen t  p r o c e s s  is s tudied d i r e e t i y  at the second s tage by n u m e r i c a l l y  solving the nonsta t ion-  
a r y  equations for  the concent ra t ion  (12). The concent ra t ion  d i s t r ibu t ion  for  which C = 1 along the l ine AB and 
C = 0 at the r e s t  of the points in the reg ion  is used as the ini t ia l  condit ion.  In o r d e r  to soive (12) by a finite d i f -  
fe rence  s cheme ,  the l ine i t e r a t i on  scheme is used [4]. 

Let us c o n s i d e r  the method for  ca lcu la t ing  the values  of the concent ra t ion  at points of the outlet  c r o s s  
sec t ion  of the reg ion  GH. Let the index i,  enumera t ing  the ve r t i c a l  (pa ra l l e l  to the y axis) s e r i e s  of the gr id ,  
a s sume  the value N on GH. Let us ca lcu la te  CN, K (K is the index enumera t ing  the hor izonta l  rows of grid 
points) us ing a Tay lo r  expansion n e a r  the point (N - 2, K) 

( ) 1 (OfC ~ (2hx)2 ' (15) OC 2Ax -I- T \ OX 2 ]N--2,K CN,K = Cv-aK + 7x ~-2,K 

where Ax is a step in the grid. In order to eliminate the second derivative, entering into Eq. (15), we perform 
a similar expansion in the opposite direction: 

El imina t ing the  quanti ty 

ces ,  we obtain 

c ( o c )  1 ( o2c ~ (2ax)2. (16) 
CN--4,K = N--2,K-- ~ ' ~  )N__2,K 2AX .Af_ T \ OX 2 )N--2,K 

�9 (OC) by cen t r a l  d i f f e r en -  (02C~ f rom Eqs.  (15) and (16) and approx imat ing  -~x N--2,K 
k Ox 2 1N--2.t< 
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Fig. 3. Axial section of the model of a well with a cavity and 
graphs showing the concentration of the displacing fluid (elec- 
trical conductivity of the fluid) as a function of time t (sec) for 
four sections near the bottom of the cavity: a) u = 2.0 m/sec; 
b) 0.2 m/sec. 

CN,K = CN--4,K -~- 2 (CN-1,K - -  CN--3,K).  (17) 

Calculat ions  us ing Eq. (17) a r e  pe r fo rmed  a f t e r  each whole s tep  in t i m e ,  and the newly computed values a r e  
then used on the r ight  s ide  of (17). 

2. We will  now examine some of the computat ional  r e s u l t s .  Ana lys i s  of the r e su l t s  shows that the s t r u c -  
tu re  of the flow and the na ture  of the d i s p l a c e m e n t  depend s t rongly  on the r a t io  of H e d s t r e m ' s  and Reynolds 
numbers .  Below, we p r e s e n t  the r e su l t s  concerning  two (in a known sense)  l imi t ing  ca ses  of low (T = 12, Re= 
1800) and high (T = 12, Re = 10) magnitudes of the r a t io  T / R e .  Fig.  l a  shows the shape of the s t r e a m l i n e s  for  
these  two cases  (the d imens ions  of the cav i ty  a r e  H = 4 and L = 8). 

The d i f fe rence  in the flow s t r u c t u r e s  a l so  leads  to a d i f fe rence  in the concent ra t ion  d i s t r ibu t ion  in the 
region.  Fo r  high Re, the i so l ines  of the concent ra t ion  approach  a d i r ec t i on  that  is p a r a l l e l  to the main flow, 
a lmos t  not pene t ra t ing  into the hole ,  while for  R = 10 the C i so l ines  s i tuate  t hemse lves  a lmos t  t r a n s v e r s e  to 
the flow. 

i 

It is convenient to examine  the deve lopment  of the d i sp l acemen t  p r o c e s s  in t ime  using d i a g r a m s  oon- 
s t ruc t ed  f rom the concent ra t ion  f ie lds .  In these  d i a g r a m s ,  the pa r t s  of the channel occupied main ly  by the 
d i sp l ac ing  fluid a r e  shaded;  examples  of such regions  a r e  locat ions  where  C > 0.65. Fig .  2a and b shows the 
r e su l t s  of the ca lcula t ions  of the d i sp l acemen t  p r o c e s s  co r r e spond ing  to Fig.  l a  and b (in these  ca lcu la t ions  it 
was a s sumed  that  the Pec le t  number  is Pe = 0.1 Re, and the values  of the d imens ion l e s s  t ime  a re  indicated in 

the f igures) .  

The d i a g r a m s  in Fig.  2a show that  for  sma l l  values  of the r a t io  T / R e  the d i sp l ac ing  fluid f i r s t  f i l ls  the 
channel.  In this  s i tua t ion ,  the cav i ty  begins to be f i l led at the edge on the fa r  s ide  of the inlet  due to the je t  
flowing onto the r e a r  wall of the cavi ty  (Fig.  l a ) .  

Fo r  l a rge  values  of T / R e ,  as can be seen  f rom Fig.  2b, the channel and the cavi ty  a r e  f i l led by the d i s -  
p lac ing  fluid a lmos t  s imul taneous ly .  The subst i tu t ion  of the content of the cav i ty  in this  c a se  begins  with the 
front  edge of the cav i ty  It should be noted that  the d i a g r a m s  in Fig.  2a c o r r e s pond  to much lower  values  of 
the d imens ion les s  t ime  than the d i a g r a m s  in Fig.  2b, s ince  the unit of m e a s u r e m e n t  of t ime  in Eq. (12) con-  
ta ins  the pumping ve loc i ty  in the denomina tor .  

3. The ex is tence  of the d i f fe ren t  flow r e g i m e s  d e s c r i b e d  above is a l so  suppor ted  by  the e xpe r i men t a l  

data .  

The model  of the well  with the cav i ty  (Fig.  3a shows the c r o s s  sec t ion  of the-model  by a su r f ace  pass ing  
through the axis) cons is ted  of a polyvinyl  ch lor ide  p las t ic  tube with a d i a m e t e r  d '  = 38 mm model ing the cas ing  
and a tube with d = 50 mm with an ax ia l ly  s y m m e t r i c  cav i ty  having a d i a m e t e r  of D = 160 mm model ing the well  
wall  with a cavi ty .  The length of the cav i ty  L = 300 mm,  the depth is H = (D-d) /2  = 55 ram, and the width of 
the channel is h = ( d - d ' ) / 2  = 6 ram. The model  was connected to a hydrau l i c  s y s t e m  with a cen t r i fuga l  pump. 
Mud with the p a r a m e t e r s  p = 1.2.103 k g / m  3, ~?oo = 1 " 1 0 - 2  k g / s e c ,  m,  and T o = 2 N / m  2 was used as a d i sp laced  
fluid. An aqueous solut ion of modified me thy lce l lu lose  and ca lc ium ch lor ide  was used as a d i sp lac ing  fluid.  

In o r d e r  to de t e rmine  the d e g r e e  of d i sp l acemen t ,  we used the fact  that  the e l e c t r i c a l  conduct ivi ty  of the 
d i sp lac ing  fluid is much g r e a t e r  than the e l e c t r i c a l  conduct ivi ty  of the d i sp laced  fluid: in this  s i tua t ion  the 
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electrical conductivity of the mixture depends on the concentration of the displacing fluid. The change in the 
electrical conductivity near the bottom of the cavity was monitored in four sections of the cavity with the help 
of four pairs of measuring electrodes (in Fig. 3a, the electrodes are indicated by numbers), entering into the 
fluid to a distance (D-d)/6 from the bottom of the cavity. The magnitude of the current between a pair of elec- 
trodes, proportional to the electrical conductivity of the fluid, was recorded with the help of an N004MI light 
beam oscillograph. Figure 3 shows the change in the electrical conductivity (concentration of the displacing 

fluid) with time in each of the four sections. 

The initial condition in the experiment (as in the calculations of Sees. 1 and 2) consisted of a stationary 
flow of the displaced fluid. This state corresponds to minimum electrical conductivity of the fluid in the cavity 
(horizontal parts of the figure). Figure 3a and b shows the results of two experiments, differing by the fluid 
pumping rate (the pumping rate u was determined as the average volume velocity of motion of the fluid in the 
gap). The density of the displacing fluid was close to the density of the displaced fluid, the difference not ex- 
ceeding 6% (p = 1.22.103 kg/m 3 and p = 1.28-103 kg/m3). 

For higher pumping velocities u = 2.0 m/see (Fig. 3a) substitution of the mud by the displacing fluid at 
the bottom of the cavity begins at sections 3, 4 far away from the inlet (in Fig. 3 the fluid flows from bottom 
to top). In these sections, the electrical conductivity (concentration of the displacing fluid) increases most 
rapidly with time. For u = 0.2 m/see (Fig. 3b), the concentration of the displacing fluid in the cavity begins 
to increase first in section 1 closest to the inlet. This property of the change in the concentration corresponds 
to the displacement regime obtained in the calculations in Section 2 for low values of the Reynolds number 

(Fig. 2b). 

Thus, the results of the experiments qualitatively support the data of the numerical calculations. It 
should be noted that the existence of two different displacement regimes is also observed in experiments, where 
the densities of the displacing and displaced fluids differ by a large amount. 

N O T A T I O N  

x and y, Ca r t e s i an  coordina tes ;  h, half-width of the gap; H, L, d imens ion less  depth and length of the 
cavity;  v x, Vy, ve loc i ty  components ;  p, densi ty;  ~ik, components  of the viscous s t r e s s  t ensor ;  elk,  components  
of the de format ion  ra t e  tensor ;  ~?, dynamic  v iscos i ty ;  7oo, dynamic  v i scos i ty  for  infinitely high d i sp lacemen t  
velocity;  T o, analog of the l imit ing s h e a r  s t r e s s  in Bingham's  fluid; W, p a r a m e t e r  in Wi l l i amson ' s  model;  u = 
q/Too, d imens ion less  v iscos i ty ;  }, s t r e a m  function; q), vor t ic i ty ;  ~0, g)0, d is t r ibut ions  of ~ and ~o at the iniet; 
r ,  a ,  b, and c a r e  aux i l i a ry  constants ;  C, concentra t ion  of the d isplacing fluid; D, diffusion coefficient;  Pc ,  
Peeler '  s number .  

2. 
3. 

4. 
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